Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding¹

This standard is issued under the fixed designation A 514/A514M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

A 514/A514M TABLE 1 Chemical Requirements (Heat Analysis)

NOTE 1-Where "..." appears in this table, there is no requirement.

	Grade A,	Grade B,	Grade C,	Grade E,	Grade F,	Grade H,	Grade J,
	%	%	%	%	%	%	%
Maximum Thickness, in.	11⁄4[32]	11⁄4[32]	11⁄4[32]	6 [150]	21⁄2[65]	2 [50]	11⁄4[32]
[mm]							
Carbon	0.15-0.21	0.12-0.21	0.10-0.20	0.12-0.20	0.10-0.20	0.12-0.21	0.12-0.21
Manganese	0.80-1.10	0.70–1.00	1.10-1.50	0.40-0.70	0.60-1.00	0.95–1.30	0.45-0.70
Phosphorus, max	0.035	0.035	0.035	0.035	0.035	0.035	0.035
Sulfur, max	0.035	0.035	0.035	0.035	0.035	0.035	0.035
Silicon	0.40-0.80	0.20-0.35	0.15-0.30	0.20-0.40	0.15-0.35	0.20-0.35	0.20-0.35
Nickel					0.70-1.00	0.30-0.70	
Chromium	0.50-0.80	0.40-0.65		1.40-2.00	0.40-0.65	0.40-0.65	
Molybdenum	0.18-0.28	0.15-0.25	0.15-0.30	0.40-0.60	0.40-0.60	0.20-0.30	0.50-0.65
Vanadium		0.03-0.08		А	0.03-0.08	0.03-0.08	
Titanium		0.01-0.03		0.01-0.10			
Zirconium	0.05–0.15 ^B						
Copper					0.15-0.50		
Boron	0.0025 max	0.0005-0.005	0.001-0.005	0.001-0.005	0.0005-0.006	0.0005-0.005	0.001-0.005
Columbium, max							
^A May be substituted for p	art or all of titanium	content on a one fo	r one basis.				
^B Zirconium may be repla	ced by cerium. Whe	n cerium is added, t	he cerium/sulfur rati	o should be approxi	mately 1.5 to 1, base	ed upon heat analys	is.
	Grade K,	Grade M,	Grade P,	Grade Q,	Grade R,	Grade S,	Grade T,
	%	%	%	%	%	%	%
Maximum Thickness, in.							
[mm]	2 [50]	2 [50]	6 [150]	6 [150]	21⁄2 [65]	21⁄2 [65]	2 [50]
_ · ·				1			

[]	= [00]	= [00]	0[:00]	0[.00]	2/2[00]	= /2 [00]	= [00]
Carbon	0.10-0.20	0.12-0.21	0.12-0.21	0.14-0.21	0.15-0.20	0.11-0.21	0.08-0.14
Manganese	1.10-1.50	0.45-0.70	0.45-0.70	0.95-1.30	0.85-1.15	1.10-1.50	1.20-1.50
Phosphorus, max	0.035	0.035	0.035	0.035	0.035	0.035	0.035
Sulfur, max	0.035	0.035	0.035	0.035	0.035	0.020	0.010
Silicon	0.15-0.30	0.20-0.35	0.20-0.35	0.15-0.35	0.20-0.35	0.15-0.45	0.40-0.60
Nickel		1.20-1.50	1.20-1.50	1.20-1.50	0.90-1.10		
Chromium			0.85-1.20	1.00-1.50	0.35-0.65		
Molybdenum	0.45-0.55	0.45-0.60	0.45-0.60	0.40-0.60	0.15-0.25	0.10-0.60	0.45-0.60
Vanadium, max				0.03-0.08	0.03-0.08	0.06	0.03-0.08
Titanium						А	
Zirconium							
Copper							
Boron	0.001-0.005	0.001-0.005	0.001-0.005			0.001-0.005	0.001-0.005
Columbium, max						0.06	
ATitanium may be prese	nt in levels up to 0.0	% to protect the br	ron additions				

TABLE 2 Tensile and Hardness Requirements

Note 1-See the Orientation and Preparation subsections in the Tension Tests section of Specification A 6/A 6M. NOTE 2-Where "..." appears in this table there is no requirement.

Thickness, in. [mm]	Ultimate Tensile Strength, ksi [MPa]	Yield Strength ^A min, ksi [MPa]	Elongation in 2 in. [50 mm], ^{BCD} min, %	Reduction of Area ^{<i>BC</i>} , min, %	Brinell Hardness ^E Number
To 3/4 [20], incl	110 to 130 [760 to 895]	100 [690]	18	40 ^F	235 to 293
Over 3/4 to 21/2 [20 to 65], incl	110 to 130 [760 to 895]	100 [690]	18	40 ^F , 50 ^G	
Over 21/2 to 6 [65 to 150], incl	100 to 130 [690 to 895]	90 [620]	16	50 ^G	

^AMeasured at 0.2 % offset or 0.5 % extension under load as described in the Determination of Tensile Properties section of Test Methods and Definitions A 370. ^BElongation and reduction of area not required to be determined for floor plates.

^C For plates tested in the transverse direction, the elongation requirement is reduced by two percentage points and the reduction of area minimum requirement is reduced by five percentage points. See elongation requirement adjustments in the Tension Tests section of Specification A 6/A 6M. ^DWhen measured on the Fig. 3 (Test Methods and Definitions A 370) 1½-in. [40-mm] wide specimen, the elongation is determined in a 2-in. [50-mm] gage length that

includes the fracture and shows the greatest elongation.

^ESee Section 8 of this specification.

^FWhen measured on the Fig. 3 (Test Methods and Definitions A 370) 1½-in. [40-mm] wide specimen.

^OWhen measured on the Fig. 4 (Test Methods and Definitions A 370) ½-in. [12.5-mm] round specimen